| − | <br>Our store has thirteen barbers with almost that many forms of [http://wiki.algabre.ch/index.php?title=Benutzer:CasieMays960 power shears]. Whatever you do, don’t buy cheap stuff. It makes an enormous difference you probably have top quality tools. One shear that a lot of our barbers have of their quiver is from C-Mon Cadillac Shear in 7″ or 7 1/2″ length. I'll attempt to copy and [http://61.178.84.89:8998/baileyhouck52 Wood Ranger brand shears] paste some data on it beneath… The CADILLAC by C-MON is a real icon within the barber trade. Made from the very best quality, hot-forged excessive carbon steel with a nickel plated finish and rubber silencer for a truly skilled look. The polished top innovative and serrated bottom blade gives it the final word skilled slicing action. Made within the USA. Purchase this product now and earn 57 Points! Earn as much as 57 Points. The CADILLAC by C-MON is a true icon within the barber trade. Made from the [http://www.vmeste-so-vsemi.ru/wiki/Easy_To_Use._Very_Comfortable_Grip best shears for summer gardening] high quality, sizzling-cast excessive carbon steel with a nickel plated end and [http://classicalmusicmp3freedownload.com/ja/index.php?title=Senior_Gardening:_Cutworm_Collars best shears for summer gardening] rubber silencer for [https://healthwiz.co.uk/index.php?title=In_Most_Zones_Of_Continent-continent_Collision Wood Ranger Power Shears official site] a really skilled look. The polished top leading edge and serrated backside blade gives it the ultimate skilled cutting action. Made in the USA.<br><br><br><br>Viscosity is a measure of a fluid's fee-dependent resistance to a change in shape or to movement of its neighboring portions relative to one another. For [https://gitea.zqll.top/audreyy145109/audrey2007/wiki/The+eight+Best+Pruning+Shears+for+each+Delicate+Snipping+And+Full-On+Lopping.- best shears for summer gardening] liquids, it corresponds to the informal concept of thickness; for instance, syrup has a higher viscosity than water. Viscosity is outlined scientifically as a drive multiplied by a time divided by an area. Thus its SI models are newton-seconds per metre squared, [https://wiki.dulovic.tech/index.php/Hurstwic:_Different_Viking_Weapons Wood Ranger shears] or [https://www.yewiki.org/Hedge_Shears_Heavy_Duty_Long_Handle_Garden_Pruning_Tool best shears for summer gardening] pascal-seconds. Viscosity quantifies the internal frictional [http://www.vokipedia.de/index.php?title=Benutzer:KandaceHeidelber Wood Ranger Power Shears USA] between adjoining layers of fluid that are in relative motion. As an example, [http://seong-ok.kr/bbs/board.php?bo_table=free&wr_id=5225560 best shears for summer gardening] when a viscous fluid is forced through a tube, it flows more rapidly near the tube's center line than close to its partitions. Experiments show that some stress (resembling a pressure distinction between the 2 ends of the tube) is required to sustain the circulate. It is because a drive is required to overcome the [https://www.youtube.com/about/ About][https://www.youtube.com/about/press/ Press][https://www.youtube.com/about/copyright/ Copyright][https://www.youtube.com/creators/ Creators][https://www.youtube.com/ads/ Advertise][https://developers.google.com/youtube Developers][https://www.youtube.com/about/policies/ Policy & Safety][https://www.youtube.com/howyoutubeworks?utm_campaign=ytgen&utm_source=ythp&utm_medium=LeftNav&utm_content=txt&u=https%3A%2F%2Fwww.youtube.com%2Fhowyoutubeworks%3Futm_source%3Dythp%26utm_medium%3DLeftNav%26utm_campaign%3Dytgen How YouTube works]© 2025 Google LLCif (window.ytcsi) window.ytcsi.tick('nc_pj', null, '');if (window.ytcsi) window.ytcsi.tick('rsbe_dpj', null, '');if (window.ytcsi) window.ytcsi.tick('js_ld', null, '');if (window.ytcsi) window.ytcsi.tick('rsef_dpj', null, '');if (window.ytcsi) window.ytcsi.tick('rsae_dpj', null, '');if (window.ytcsi) window.ytcsi.tick('js_r', null, '');if (window.ytcsi) window.ytcsi.tick('ac', null, '');var onPolymerReady = function(e) window.removeEventListener('script-load-dpj', onPolymerReady);if (window.ytcsi) window.ytcsi.tick('apr', null, '');; if (window.Polymer && Polymer.RenderStatus) onPolymerReady(); else window.addEventListener('script-load-dpj', onPolymerReady);(function() window.ytAtR = '\x7b\x22responseContext\x22:\x7b\x22serviceTrackingParams\x22:\x5b\x7b\x22service\x22:\x22CSI\x22,\x22params\x22:\x5b\x7b\x22key\x22:\x22c\x22,\x22value\x22:\x22WEB\x22\x7d,\x7b\x22key\x22:\x22cver\x22,\x22value\x22:\x222.20250829.01.00\x22\x7d,\x7b\x22key\x22:\x22yt_li\x22,\x22value\x22:\x220\x22\x7d,\x7b\x22key\x22:\x22GetAttestationChallenge_rid\x22,\x22value\x22:\x220xe3337c2a86db7a0f\x22\x7d\x5d\x7d,\x7b\x22service\x22:\x22GFEEDBACK\x22,\x22params\x22:\x5b\x7b\x22key\x22:\x22logged_in\x22,\x22value\x22:\x220\x22\x7d,\x7b\x22key\x22:\x22visitor_data\x22,\x22value\x22:\x22CgtoOWxraTU2REpkdyiEu9XFBjIKCgJaVxIEGgAgYA%3D%3D\x22\x7d\x5d\x7d,\x7b\x22service\x22:\x22GUIDED_HELP\x22,\x22params\x22:\x5b\x7b\x22key\x22:\x22logged_in\x22,\x22value\x22:\x220\x22\x7d\x5d\x7d,\x7b\x22service\x22:\x22ECATCHER\x22,\x22params\x22:\x5b\x7b\x22key\x22:\x22client.version\x22,\x22value\x22:\x222.20250829\x22\x7d,\x7b\x22key\x22:\x22client.name\x22,\x22value\x22:\x22WEB\x22\x7d\x5d\x7d\x5d,\x22mainAppWebResponseContext\x22:\x7b\x22loggedOut\x22:true\x7d,\x22webResponseContextExtensionData\x22:\x7b\x22hasDecorated\x22:true\x7d\x7d,\x22challenge\x22:\x22a\x3d6\\u0026a2\x3d10\\u0026b\x3dJkV9oVGUBB5qTwRLa6ffZuDektQ\\u0026c\x3d1756716420\\u0026d\x3d1\\u0026t\x3d7200\\u0026c1a\x3d1\\u0026c6a\x3d1\\u0026c6b\x3d1\\u0026hh\x3d3IG340lC2VTtzQdNXGLHUtgE9tHXLRI-kwjmx5aycf8\x22,\x22bgChallenge\x22:\x7b\x22interpreterUrl\x22:\x7b\x22privateDoNotAccessOrElseTrustedResourceUrlWrappedValue\x22:\x22\/\/www.google.com\/js\/th\/v7YPk1t2ZbMup9RmZgT-QJcABEWmUxstzPfTeIOw6Hc.js\x22\x7d,\x22interpreterHash\x22:\x22v7YPk1t2ZbMup9RmZgT-QJcABEWmUxstzPfTeIOw6Hc\x22,\x22program\x22:\x22iekD\/O9NO7UYHJHdwx1jG4uXvbF1z746VIPAZSWEQmxKU75dU7msGMJo3vozIW9tf57c2gH8S9fm04UkC\/azEHkz5gLmFawWdAgeX3tOEU2XgsCWL\/cOTxuMBPfdsVZ6oyTCraY3sixgT7h3\/bD9YCnyR9p4KlfIyHFqu6HMrejxIBz1sg5gR2t0zYJt0xQxma7l6iHiDf+\/qwVrEYyDIPZ4pRRkLVLXaQS2kFF5T+qBs3lKSu30NqpDhB9Z1dwyw6nWZNAY+0tP5PoIGq3uOfgKDWxUnRc0oyuxx\/HNtmzTYpcPkuZ7lMIneQzUf3M1XBQkwtsOAoY0Y5x+WXpoUdfGRixvURpVZ19FYP0BlMP43++x13xK6Y4q2TYbB+fftoShGQ9kT5hTXJSHy5LyWa+kOnhYqMXq00VNpmDsGFlBPYDPLfFAKqmvMu\/yRCYe+5CjtjznrxIcr6NxWLBspPmaj3TP7T2fVMKVWFpOAEFmZQiSGemyozMpEaS3DXoU2ANQKd0oFRMi\/+jA4hmTIAisJfoD17lbbdJn2gSMJzXYUUrC\/3zHbksxFaq5i6Uj9269vcGAFV1b6a7SHeGsWdepfpT3\/d605JvPKNopYyuz052L3w5MQNL5QLrY9InWSuZN94Pq+yW\/WAiY06Dfzj8hktDxWZtHrXPSWA1EAbCVZwWAEn0rVSEL7n\/N6\/vaRRChLPr5vb68FGblBi0ChSIBwzat2D+5xfcCne\/ebPi\/EVNHbpUXzJoiJaBJ2poEYxoxVnYiNRVcgtp1WlXe0vGTEB+zBdvxCCNPh9rms+X1GQzJi7L26p5Nlx\/6hI57PcbwmjUQuo0uX3PCAuVINZ7JWhxWbFJWt1uNnKPKHzwr5MPX4AyiishAvlgequ\/glN+IZ1YPzkThesVIGjHXAJIVPvC1MNsmyHiH2l9NScz9VwvC4U+dd4cVfsi1OzOgydaJ9z\/ZRTpBOz\/QC7a1XOoVBiR0VkIcEIAPv5KNe5gsv+RF1eCinD3AruC1bTQooiTIkZ2kzj\/78h0+aXe184RwLP5wCt5QKhgNIHa9cgPKV+Q76Scgg+SFLBHceOFwkG3LlemN5VkKQ0zk56wRaa7IxIGwn1J4RFBbh7H3ICrbHMxPlb0VqhGFpICkXBSwxZpwJjr4vsqryQ1ks4gRCK5vqUwHY4EK6QVSsDKznHe59EOdp9bvo\/4fbRYruvLf+5QOiOuLmyIKm8WnL16C9dCqhmroY8\/J+jvMQlefjAJMShwMRy6Zbitwb8l8g5mVVbzGGsqSUTQr6hCci9f6xmirRtPQBDrZqO9sz5X0Ciulx6Kt3\/RP0Z9A7QAIY3b2GtgEbGqklhcw7NSfYFKQG+DHNn8jWHzMF89auzP1V1BfDq6dXlGY9CVSqnmCjCFDEzReRhll4BRGC\/3sxSYkamSE9Z8kaTTUswaaHTfv+CT7W6Ote1ru0kgYAgubKGC6cAGqNcwfq36fR258LDkcjMM6nu23wojekZJvU18zxjvfBaj15c1pnNZ3KUjNOyQHqIzXy2VefxSjr5HGQA0WTBAF4XpNqGuz1A9i+Y43FST4M6KQKILlqwB7DPEWlLMRn2HwIk4TUXO0SHl5mCDig3rSWYCi0dKSAfN9fwh9i9BUjIdB+FnBU0Z5KH2dRPD0Nl6DWFrgdCkrQ\/1Rkv4XcXo2UD4Wy6pYKen7DQjoGs3XnjzBiMOJACUBVSt\/5N20Ge3G9o0G248fuusKAWT4UtkRLmvA+7R78GH\/52p7tWyLITEhV4FY0JmqtgIhtIcftsXr5Xn5lI3yM5\/PBl+7ox42z4NBaEUY0qR4fz\/yk8fAx0hdAKc13UuF6Sl8BaR7b4oyw2CNmB\/lYKFtTs810aUGaDvTHEaWz1U\/KiXe7LaKyqh2iNWaWp7WKhOmR68ICVNTbUxRtyV1vyomZCEBZRwm5CqIq4l5VsuwOocWlx6s5iHQ3bjUXEImgNbuziGQ3lz4MwBw1+sOSJIU3eX+BaR6Vh6Fwm9rCovcDZCkgES6yXeMGQWAHU9YT9vtrFwVgpapz2oyxDs1Z0jMIPKBa2E3GTR+eJMW9M+OOYXr3DBnog4NjngHZaFjMziBnLiv8v\/Btst1deyCETZqjmyUmucy\/5AH2Hy1G6s9\/nY9xdMwWqADNb1ijnOW10WpMXVJ+n3CIftS2OXgXozX8Ox8mPbmZjsOJlfxhuVUoJ3cnBxRTwUgOhr5G+\/BKmPeetJwvAo965DPOKuAzIbCD7P5HFLamW5qs0FubQkWL9P7jc6XU0Kw66IoKsNlnnGVm9sfBeth4ESfutUPkWrFirvNlexZ0DC7wPAZ5eioA8at3V9MK\/UX1MmuIM8a0d\/mCrNjs29C0h5BmXUKYUav7izJsD\/JRG7VDJE+6L9EaBRfqlFX4BKm0CAQk0ChbEXov21hlz1dHMYHxKTttFu0NMTc8vc9YrFFBRTDtH84TjgzJEaQRT5Arz\/rFKETNTbSTB4cYuO2v8F\/H6j2s9Tg8htV0xV\/JEyl\/XI5hBO3cqiOxOTSQsGmozFBkc1A3tPUpXfzQBK4hLyiy4EnaLw1dqD0Ou2lV\/rvY6xu4ZFo7U+Jz1iDCqPbGQRiUMgt6A\/fafBso4trM9kPcnrRn0IC7Otj8gTDL0i+q\/ruYdcEQobyqgmmrcrVcAYxk3rtsKrLSJ9Fr97GqAZNHhdkc6gQMc81jmeikV8sFJgQKODt28hyuIk7C5m7U5ioqt7bVgLBwK6FVlmBOCHlaQZFde9eZOvsgQl59m2NlqDhxRp5sOAUGSfRt+htathMZJ9XTHpqAn1FHXGGYhm9ycjxhNJbltic+sXYgDzjxvKUrGVTgCPnv+7a9AgWUGRLb4Zqwy2tNperVP0CHIeWjPjOr3FuwYJU6bg4qJh1OQ+MAfVgK\/LdlO+A02g+BkGv9YIzMJzGzsJtwb1m+eOerikRovcfHfZvs7mk82MbrF3iTPbCUCTVofM2z6r9L\/bk8iiiBg7y9qfc4mRtLORP4xWauYd3jqmXhYMTovE1X7h6gtbb\/GPqSeU8ADDO9iPYijE04epbkoOXdhUtBsLvxUmHP4wbhh4gnS\/gVmZxOIVMlrooGFoj5OFU2YYm2Sy2r+LuhjuB8TEVTyyIuNCWpkjT9ptaevUlOJ8cZK+5SJMRgR7mSFAqv6ktMSG99mwGtuh50Bh39QGmAdclepaZR3cnP4bVSp29S+ieZtkdIf+vcnDtcyrDx0stW54fIb0gQzwBBD+6UWQY\/kp\/z38g8AZsA39h2qRPCT2\/JSJkojijCQFl6WO\/62nZRAILWZHC56PY+0WrbXrWe7ufBpGuL4VJwftjnIRrL7m1ofszpM7nfMA8z\/x8HV6Uay8mFZ0NN6jwZWE2R1THRu4osPxbo83erWBWLyExkQMTN\/bMI31UZ4JuKxYqaMe3cYuBSxuwJsVJA\/VR2tRSxEb+5Ka3GzUP9PIogdBgxrGKAygPNvBwjhwmN4ls2Kq8QC4Q+eVJ1YyuCffZm8EXDnx8mFsWH96LJ6O1pZZI5qnclQBjEt6A+F32Pe0Tbf+y2ZR5gpRBCZfOwz+IW7YkaqkYHqR4mpkX5\/A\/BH6ZnV\/pQHV\/ftqTrkCw\/E3pM7vDaBg8Xp7MuCkUE36hT7BFoL9JObmIUVdmMtytdanM\/oifFWXDqHHmNcYh0JJDOJOhnb5iQJAl27H\/IHU2bg20QPAywn6OFekklmIGqa\/O5r7FYNNWqFq9PeU8KtKmTyK38qiK3pv0CMpCRMGFrQSgs3mwaIKD\/VyBUC0heqDohJXJj\/8PtxBIEY\/0wltS86uYxC0ZsGQpUvtQS1+fiToWnwwaMFfpExAv45IUnst0nRPDJpAwBPpUc3zpBtCR0QZw5INOajUIYq8P0lhVwj8VIarL\/Rdn\/a6ysBxhF8dYrSzW2BQBgp1R1L7CsHZes+qNqVPGP09\/FmJ6o7FSD3Fj1B2QsUCBmhGXyqEutuaPjiTDE+6BdehVNFmFDiwDXNhdUQ+huf5bk20PFQ04\/h9\/S3r+OorcDmHNTbe5k6yhSGUIZYEB2rD4LH7LAJOmX3110NL\/ZEzAmRDjVuv\/P2oadavmJE29RCArgLMvV+4No68qMmCv3pdasYHFaB6S2XB1YNrcy4YCsSGoQDx9dDMPM5M\/u4ygoEFUkSUb5cBCmE\/k\/TzDjtG5NCLjbFALB8Hpp+1c1KSvA6+ivGq7JB4mTmnMZgO1dLh8nB3aytVZMMlHoAC+YEtRcUoF0SuL22xIIEB8N\/y4LeFAz9xPiNL+rALyhCcBB26D43DD8qAgk34Xx7w7NxkaFwUy88jjsonN4lF\/ytoGfhYotjwlfzkR7NUpPUbFKtOd+SPB3efUpws\/zcwdl0e3ge672W7fETu38XH\/2upCAHAZJujBeX0zbK\/ibHaGB2V7RKkIjz7dV+UVOpNIsCXZ0fBcqiyxb\/p85Pjj2e\/vA3FDQv+HxnAQBG8SS98NGTiob+DwHusSty3EnrXG2cNzOC5b4ICwvOtLCNvMY3tYdTjt1QVd7Zq0LBWvXDbKt6smFymPSU+3VIFzwmZlRyUm8vUV9NsQfINBKRAxvvCWnSFFGvixA9Nj\/R0ntjEOC0oslG+Q5Wi7oUayHr\/Cd+kn4r24asiX6EEwHbHeLh\/I6oMpjqiADwfugUtx2R4nVRfJHPLJiseEkI2ibhTijPlTAzPRZ9ZzQw472pe5oO6Zd53OmTFekVcJIshbMriiVweSgKei82E7eNJjoHU55CcFpvjQfx7q\/wWj+dPnMWew9WjBVyEso8BP4NWqkQ7xUYpAW35qwLn2ZXYG4RMkC7pHSZq5v1KUYVF05tivtff0KJ\/PBG+vpOd7a5r+K\/FYNFSjWTja\/QhBRP17abtrmMbkQatcIle3gMEF775Qg+Rpn9HXv7MZgCZ\/NZ\/P1WEZScbUw4ATQwj7SJOJpGUaSdGyj3DGMs5CxcCqSvaP4Uox3w1ij2E9MgS4YNaiu8Vd8hISFGlz0WSh79k4IzfgiDgHN9GcGfEo1oXOwqVtKG\/T4hcAZmJ+mkGmFyfONfbJ395331WqCdX7GAbfEYWVOIrLIlX1+YGo+PTezrHsIwmP6+kEE4YOETbuXcftZ8iQ6KzG7H0TcigrEWCmgOHZun+4wQKCZNVoRgwWxc1KI+Dn2LjnbxQR+mX1Ais1lPBJTMOUTinSifBF4fBI73xUtJZ12DtRjuh856eKVujuNT3YEyPr3lJv+9IlrYoJzBwusI\/x7u3zJUxFUONamfsxf6s2azX+m5hqCceLSLyVEfwYkcVAvYzMpbGgREFezdB6b+dsPjRvxYP\/yKjoedhI6McS0h8bXzsBs3ldAUOGvjnhGVwz1GlInDdNjt61z5xBiwDUrHyznm\/UMBSmzX+X2Z6sVynrQMhgCKSI6bUKQr7jHL05iUnxyVC9\/k7PtE5kNckqf3UOzU\/Ew91WZk1BvJE00liM04PQVMKeWY6mEi4EuZYjuGNhUuOTRqbm4WPnlda5\/trixwhjdpE4fQ3TjcyDPKemlYU0JymbjfpKeGZ0F0UUgfZ5W3prZyOrzFD5W7BeCUNwtHj+HezngZ3HNgonw54TDuG8VSFhaCN64jqekwLgFxBAVwe24zl\/Jm2LxD7XZWpttWpDiInbiA+gtnNlhPkYtMgFG6m7PPUYjMWvilXpYP\/QUJP\/eKHyxorq\/oeXiogqcAzUhmrlI1zt8HpIwEY8H69zAae2AgkJLo0DZuULKhFVaQMuPKeqrYHhSxZmEo4dO3QRv99cW\/NHlakdFvJpAoWXuBrnfNEmB\/KiDROn1ljRoRAPRK9ohUdXIUeY\/tzidzACFSktNidCeGb3SEcryl0N\/s\/z+7C1L1p2ZnPX\/mmY+i6NApjBtJpg0QkzBr9KeMaMUISRXQn1RV8OxNPlOO3Kz0cCSp6pjZu4IAMpJf3jY0TF7sfEF5kvjNwTVDa+d3YUW\/cYhMeanC03heYTEb0i7VXVhdPac8cY0QI9Vm3I8exjgSG63kdu9uRLRfNkZrUwxUJAfO\/NbNlVKsYcO\/mRIfSZF1YbKZO9j+GXJMaaay4XMHZ2GYIeYeba7LUpFpUm2+wainUlwkOfNCgMiR\/\/P3Iw78o0GXAkDBDslpRI4FyFyZsnaDobxtHJAns5MSpMxf++gFNjZA8oVqgXDFAEW37aCo7Lj3AjY2\/3CFAzhgZsIsXbYqr2bieK37SaiwRQyFE3wcJNAJd15kEgfOyXshyV8aqR8LnBsn3nelgSwizZpoFHrY9dbbWU8oZhnYFD\/U+Ef9LB2vmUJgiQ8VlubG6vAi+3x508OJpucMxL+vfDbTxwepknZbmf5uGRHhUbmWsyYUffquhTVdUVB9c7Nl2vUIt95oEXjMxQn\/ccLtJ6685QJHkoMmWJR60ngpTGlsyMcVkoU+aBn5tFulHBNbnG+8CbGKvOHuBJdKX3rd57XRE5XULdfW6CYoEy5\/cFHlhr1DK0KgEhBqnZZuHEHziUye2KQcILzp6T2IPsHPw\/xMnGfZbqo9fEy2BrdnyXcmSyGoEzuR2BhJdPOTKSmWKWlWzOEdA\/iWesx3FeSNfrulNxAUarzWjiD+p0TunAFEH1gnfCndsM4df2ifqVUjjwWP8yIJRipVyO9cZY1WABCxvfuB0JFhd2fKKoPVKoiD7xe3lGo7omM\/IVgqYUgZce1RkNJh5nVhtEoy8AQhwG2+GDQeNmGRuXCKErNmQzw\/Js+xolTS\/V63IVZqHAF\/kkXSzjzJv6xrZMHNL\/JwxU9nu+VOgYz2EAwgY7aFL5KcMdr+7sAty1pet0gtqIAMfGET3wWX1qJM\/3JILf0s1ZRBZKEuk3\/+fj17MseN+BbZeYFmKDh0Sbq88v9kxiGugH8ySab6FuZTlkn5oUurGPASyAHdsyhH6vHjqvRnWkK+LZY74OcmJIULaEMaarYlMaZviHVYoTCBFcReOQEodXcyBQ6ZdT9TGyar3ABcvJxbP6WbTD\/wCAaJ1jcpVCyPWqvH2rBApo58NcpJpsRh7jY4FJ\/LRzAD3a7dpDp5xwdBdprIfdN4gfOeI0H39rPNaQUNqwfZQybS5l37RA9q5zaslwI1ordTzh2WDrYlTIjlqjrmCzLaRrVqn0moAs6FtR0F1Wxp6VO2L7tXhRCA2rrmHT2y9Tjn5eYybwHsyZ3aTf7oqPhCDbt72uT8ePgfzqyl4QO9\/BNMMNNOBfyi\/dW02Fykjv0zwud61nNGLuQcXIx0+y\/pfACQPjdy65Lhok6Q2bEQK11fM32uZO\/KMD5aLXpLpVauKRbhc7V5NB6C5iEibCEcrgIn8CtFy5u7wOgzuX\/0ULXt+noo0MuukG8x6fldxEik8ZWSDj\/MtGcKIp9e8Zgm863FKU5I9M9vP4Yw1u90yfgnd4j7aP6FTgqWaEjH69Ta87smU9eNefiCFj26bOVGQ9wbiAUzImw7e5vpHWuyEUeSVf8JZ2rcYbGKl4H78g8L0NiehP5H9ijYisQaCpxRIay46DjrqBSIrss7F+tSBk+7pI\/F4hk3YhApHV3N0SiYzmd3xbGDRY3o4H9zDa74Y8R1mrF81ZYlu5eRlcnc0LzWTPKK34eG5Me7rwi2poBLHyh+M3NcXPIfWkB\/jqn6r2B5u\/OSW1zk2AL8YL4T\/xlUfB3AqXWFxRMmH5sMk\/Ypc2KQn1rBi53VfabQDt59GPOX5VRme5LbMJriyla\/C8yi3HdRqov65ekHdFuzGsbPoOqNjIeHIWD3TnzjpHF70p6q4f6vZRZbiyfJiFM1nkMHymw0Q0tUpwV\/v6nDR+1gPZa55D0jLLCSwb5ZSFCLvBgXho9gxHeEeBVUQblfB1LZucueUi3IeOVa7dJJ+iaP8ydKJ83jPmIQj16PWJvHzU6AQx4Xht570xrKxeU54q\/78ArWuii76QlgLI2YpO5Q5Q2v8ViRrp34uftDWwEV2UZtlsxvmuOaCozwuYCt79b9N1Yx8qBhNTAY1Md3Ls7\/g6VnGk2PPJDIAX4rkS4FFDrIZoOAnvA9nZDi\/XXqf0jNGTB\/egL2dKvgcOeNnr2tS8YhvyKKV6+XIvdp50PKJywf0A0yAXYyCTK9J7CGpomUmjymIviHaNtDsE9xb0BmgsEyk11xFcg\/03HiAu4zvdPE8jZ9IQuxHBQkWMZ4ToSNm1AqccBCU+q9y97hvO2iXcCJexJDJnMcRUthXLnDECS0wlvp2QEm+50X35LPAB43z7ahGYPWgYzR25ghAnyzpwO5Ck+fvMcLyGBrZJzWOS2kmqJEDgLprg8H2clZ8iQS6+v3eBwlTWztTbXXDJQjLo01roOCzEI26gWNk8IVvJmf52gJfvZ4YDDQuy173dATurtbfAa0Uml3yPDPMXdWLhTVn+R7oEh81roBo9CrH1jfjaOmRooI1Yi85j5vH7hbZVtNhVfi7pd8Q3Sn8aPx4FW4NlnblY6PyDzoOsGiZyus8MU5cCduekYUjx11ZatgLhHZ4KsU7KlFkNzWj4x7miEkTSRNBzA0hOATR3FAn\/+uXTpgpVwgmCvbphdiubjD7eqjCD\/cMIsLxlXOeJfynKlXKYLfIYNnX7kDU6\/Bvu+GjaUxkUf6le4x6WKfgDlCIqR1IByRMhagkgjn3ApoMAG1XWIQPq8rwKaVkOraR4QFbNk1BJHvRV0sZzdg0juR0Imv\/z4TCkT3D5DnbEgUaD1QvDnPRydk5qItj4rs7Gvs7SLubkyL\/NH2vhLGIQxAEoSxhKExSf7mXxpfHt\/F\/5QneRnYvhQD0rJ+5nfhE3o5JOGZZWRSa+nCJ1i6Q5DyUz\/ADrae7sJdx7+LBZ1B2\/UoHPDhVWeL+DQIXud8i2xP5F5fCCZpapn7Y7GgpqeDRPde\/8nCm6AHaY9mM\/rZOc44FV4yLr6ZkaY7at3fB4Gin+g6iYZM8osUih7CSd8WrrvZle8p5dSJiqk1Hvl1B\/VLM7GJKaL5zWr0oROmG1UxWwaODNOoclU+sdHuwYCHw8sGuDVUDAW76QGe2DngWoBFXdvczzE8ZAsVDSjoVWT9Rjvg7kQfj\/IJfI2ZeN6CwQKOgoSxxKOUP4tRTsLWkGZdBsmNtgqOW4OGmhuYO\/WPgh7eIk8oTuRG61KjHx03B0zph5jqfh\/N3JzJOpXRkDPcKKq\/xfSlOw616fuxh6TplxuLoojffAe4i3cVihqpVUtg+mitOaCcdscgbEk5xmXHTnsPs3yi8MHWEEwTIs0fY8xqxHHPaXNwJmm44tU5J5u2vqJtq8L\/0DP9YzgOW856UOe78QduDDqfE73bOb4TTCQQ5cL1I\/dBd0yojE\/lOiOBNKk\/GqYA7hHzhUo0ue3BiC4+CxrVD2qA4lnHPgHSOXdi6AebkoOWP617LiH8uCwphpuMhh3QLMnZlAXG+WI+ChNM5YLU6JQno9WCP2KBqjf7mYyFGhEu23XMyJI2IEHudIIBUHNw+chAcunPzum664TLVM3MWb2suH61HKUWfI2tdKJUxxX5Wv2Z8TI74Coe2WYhVaOX4HbG19a07vMjqzFq19O3JhMX487udFQCFcMSJCkJDIgz6hEqJaskn4slibUeGQAP06ha4JCaIS\/YtN3fXvjOYdIVIch21q0hvotVG5RHnvAYWvs7\/XW6zSZyAXPB0v187reMMyswa\/C4akR\/WCSAvOmbadDHAxSmGCX3lIQOzEQ65o8hxCvEmXdWqacPNhcXz1occdmYUnaZFn6AxOMOp0jzvHTE6gLcCab+Mfq6Syja30VQCk15SoTR0GGA0xqdUUdNGCktyvAomWpj44O6YYVYeuLIh5WGSbT5gI3bcHlR5R3ydKRHHiYdFL8w\/QzkiDx1O6LBXuEX1kT86TsjNqCvP+RLExG8mfePRckED42V0gExI0Oa9nLXb5i2fszdTCVSpDRH1K+9Dmjw\/sqIeSq+TmQA1WzuU3cZBDQ21fNNShyTPR1e0blDrUKYeDrwTTTWoiVE9YR6pi\/aKTGCXS7E3862ppC6l1A0TKlQTJFfEH3KORdS5X4Dvpat14RcEjW+Wi58y5nAbv2laFfFhG2VeopGYXa1Mh6MhLN6vHpu7IvwfjjIxauUexc5P8ohsNCGCGm6Kzis2XJYD3MlWgRgySO1HiqDpfa9fcmS+xxeqBSjkCyFd1pV4l4wqZSLnpDRknPXAlCYa0OupHW8p\/Qm+qd9NmB9NYnOgGoJeOC52guQdm49UvV+dIfHxvVJx3eSx8xQuHKgyj+R9zFem1nN3BSBO7uKMTYeC7J+twpyWWmOg4+7jI+2K5LJNtBcAhXgwlwcZuVKFD0XGGcI2NjKTOGGLdZpi2qdKcyvA2Cce4Tpewc7k4XFl+u6sOgMeNX9cX2Ad417zfoXSTIrqfRMHCQqnxOGRlMmxD5dPyXH7GOx8bbkwx+VGxgQCPf\/2gpt0bg21DkguU2c3S7CITjxs38VwK+2rysKcSRA8\/YnbNvwhUZYNc45DEH0PFkFYEGsK0yzFk5Fs2AQ\/cqch6rHtzdB6wLCGcX\/PnXh1pHAPr0T2NorLYx10hK7nbcccjnr6YV9HlmXISwVr37jLPR9YlYJq1SAiL5lWItVUfOIEsHFae4RNkzkzUoVpvbh0xca\/rn+Xv8BKkqoz\/is9N5\/Eqx0gSJXu2M1kAluEp5xR\/d8UkEt3p\/QSZQ6OyPC1M9PPyPPl60hyD8EbqBkR7Duf8TI+kMglNLhlxQc8ggCV57hlCXxB4Qk5PlkQoF+sd9wxxQhAMwq+ODWfGMg8GqZm7t\/CWYyd\/28or9om6zAabCx\/1cdfO3l0II6NSjl7MEnIyuKCdMxQnWbth8KwIQNNCE\/hiPjJ93CsFhWXQlHGog3Gi+4vQHKsAEqSY3g0U\/gnh9UebnNA4wBT5jkxnUmf38kvB3KVME7Nr3coQeA\/feFr7bXOdeoaoO7FCp5AKfDkWHMJLK8JOP6Rw17JKpnuVAp9f3kDZ50kHwYSY51omCM+9pvEV\/VMS+5qJU3R2PRFrw5jt0Ro5C76dYj9mre57Wu3PLo5EvKTWLNn+cjbU0rp7Jj6s8PEhYK94ICxVPQojU1dOY3XEz5LajlVKo8ycm9un7KVdEIqVY8WminbopPlOjCm6ZF32F1GkmNTMzh++7phUU9tmxKwn4vWIxGw7h+QRyL1aj6Fn88obiIJBkdvSUrkDu\/gKHqQ4u2qeeS+pjriuOTLiB6Qc0h1UttlFHCICnYi2XW3bYFtvDsr03LVbBo\/W7jWH5jKPZ0HTQcB4CD28MBEQ13ZXWtRB\/72SSLgcbYbfko4LgAv4bLN+NBXG+HlrINzJJNlloe+rmckGl0DsbABgh9xFdvuiMJu9zIHCOU9XJv3B0GPef+CiHnElw5y5aS44UksU5tf4xhKywHDEp4mKDqd\/yrROZeE+eHRb5tJZ0HEGXDfwvO1HkbNHSBZRLSZVUvbI25a6adaCDPfCISfpVRRbpCtC5dlEfDJZb6sWrySPJGkLa9Y0ht1tdvWCMUPnAU98IoCXJ4opn1Uq5JK62CPxPV7XMIkMqmKLpeZdhoEB+Lwm\/KVxbywAsoaUQjWRuthha4\/OJ0LMfYx9Oi+8VESBOX+7NVmfLQQamIb6mLS3IeU2sq7RU7xLGFS0soYNZhop7WsChAqTlyDoizlEe\/npvlTxDZ\/dGeHN8Z9VbvUHIGo6XNENXDudTPaN95WUiZqsnLRE+RWZ5XPco52VjhRm66SRbWtLKTf7mV4qM6I0UofyhLqwy6gmvrsFe0Mb\/gbCeGCRVUArC2\/OKzuu2LlhXNvV\/U7xF+YaESFd1FDjKHPEcgCHW7rUUzEZ6apCSJQYAvgRIRisDqzF92S8KvYLafTte729N\/BGeAB\/8G\/I6LdLjzBlf4zD4g942DMXSzRLbGNBIF0ogHYZmc6MJU6lE3PhOJ6qbH6RWiNaAAzFwrAxf2NStjdtzx7EEMo0sq2hdNHZVmtLzJ4TYi47CAw578LOSg2PmEHrjkmDY0L00WwZigp3+xBUbKN4st4j6m1Qd7KjK7VAsqAN8KvrL1lHrpzq39lQNEBf9mSjrGV4rzac+pAeIuy5jhmhf0mu52gePlgAJczTUaL8PTx84CbUrJgu\/hKW9h9XAPRUelc7YZySxeld5HjEtc6jMeeRPUpGuxml8eFbGqd0qftybF1iTkxP+mSNgVdiGJqmGMsabQhe57NnsJb+hD6SncycgsGGvT1\/s4A+RhB8Gofk63h7fs4Dw74Ja6fNTrj5ddtsgO1ifLR2JJISskncOmEjcNj0+kMkDU0mx66KYlfvOnrqhu+5NIBQnn\/m4PdFeaCWoS\/UarLt8fO8wUbCdhH3qDRGmXeZEmteZxOsLxN1YEkis1pJUTxo7SY5YnU9eddCVPzMmYaYN46ANYPxyICbqUWSy0CrTw4yaeUd0iilRfp\/8jVndY4\/\/lKN3DvPNbePZHFabZTsPAcUy0rE3wifG9Ei1IDwYl2koK566ype1iVeucD7wj2PdzcQ7PQKN7UxohSBzBK5c7m1dPSvQkGkRBEmTB88cs\/WUbCdpYdYJmma31GpSvK1Q2orMnj+tYaICu0QxFv5ArriqNlmzcmrEsxlOvKtspCTR9pKQOz4iQEYwHc2jyYEAgroESihFdIkOarq8DRyvyt30h8HXCz\/wcBlrind9T6+ee4oA0LQUuQcy8k9o9YUXz68SA8bSAoOo9+zQ3wBkzqre1oO1n+L87xXB3lH7zwPcWr7Wsc6jusVZ9mxVeSJo5tlOZDMPG7YcgRvI0eEq0LMByHOAkAtA8c5z1zxNwp1X0sBPq9d5irhp\/HHvnZaxmEQGdJR2jp6X9OcZrHO0WX5RG33l2nAPIEU2anQhQlFUCBiJIqNwBbKx+7rz0AHVk7UP3CjNlusCYXK\/Cf5j47N0lgLE2umtS6iDf9LcDBaxQRlu7FPO5KMoLGKSoexEk1cR5u\/UAjP9L\/Ym6OP666cMkdmNLLW3VGIF03Q3mwMZPEZndKtFjnRAW05467pPDAXtpC+rKBqS0spIZ1FTaAhPcTI5AQDj\/O59FfCKLhtwXorS5Vd72eDFCm0v7d1tTVdup3o+gaMWBbKFrOC2anLLS3MFkYcNHfICSvNGRjy4lbAI3RCO76xFG5PpQDMU+e0Nvu6ho23gCRSj5noWJ\/YtU2\/Fq5gN\/sDWLE3zeyLl7wmos3ODa34WQu+fM9rW1pfVw8ndarcnj0IDYlzcAIRIX9M\/cUW548Hepc38ksD7Km27UurItBRRgtTxJseiG4NrPtWTobkGRyl1aflaRQ0M1US\/JD5QEUmvBwtftgDbFR7kZr3b7z2xcGORzIb1BWZUPyG0uMjl5AkglwuRM0fBtcQS1wVggcyihKp3WI5v+cJfSD0ZsW2CTbB8zSfqTYM+sWeUxhBfeQkrE6RCwnbbdNV\/85d\/mKttZpQZWH0zir7Dz2jwk7sYl604VvtxwdjmtlSUxXrAJebq2cZjqPyj\/srjjHsoBlZhQvEZ3ido0iEGP9z2dKQ9rXyip+mshUhWXpkAqxeVcpvWoBKbI0C3A+NqjqRVE\/ThkkmNXm7cPgRH1\/XbZ\/NT1v3\/yrc2c8DFqvrhVyxqKLc7k0vyOZ8YL5PX8GjYnK8RcdP6mwg\/xo9C7hCy58CKVGEBMYBo4hHhMCL+21yIYFuHQTYvgLc1veufmPr1sYWyUytb6SSeKEr5LKr2OUqwIv6Q4K+LRcS+1rRKZU5nhcRJjtujQ9g5TkUPt\/pXvAH++\/91btGu6LXRL90fUYzMZPEwsWKs1e\/8TtwKXIMltq+w6CwlOy7fumkReMzUWH+ISygVmmYTkBtpq5N6t8XbpF2VMZsqMuQp+UJ8FChljyXoxEOsKdR1VDGwqiL+Uq44mzvkSDga44LODOmZOhhXQGch8A18pW392LfnFambPHPjzdMbXO3DBEBmXtd9u7o4hxpkGpjUjqAYJw9S7mD1L2OlOBskEfD5dGIZEUflTn2gNTu4mvWSJoSFB2VTF68ARxKrQVIxHCDTAB6Qd7wpoYU6oHsy5TbS4S7\/sMV67p4unSKWbwIq4C8nXd7fkvNGSlCZK1iatLWdOZjyB9mFMAKiDnEQWg2DTCOLJ7qk8TOECRvH3kr3qavlgWgn1jDC13Y9kEEgJidL8H5VHTfgB8afRuQY7mj2qnsiB+hTxyWaCoeEZ6hfF3rKLtwO46QmNBuC+nUjF3mcH7tOWHXps5oSluRyyj3RR2RI2oq9nPcd\/39krdMFyUoa\/8X4LMzUiWbTl8Gi9LiA33bHT6T4FwecnrmwJ9scwi\/z9l7BbBwhGsfkEUaVlf5ykg1JQOkOn3ZbqymaX\/SEF7J1urWwlEbS6YUQes1f5mKhD0iQ3r0ybuth53O5OAcKlXopIcTuBiuBjrDELts8H0fjs8pwEgkcTz+U+HvcDlxXk2ry+bO6tGXPjp570GWBGEIv+MWhfqbGu2Np5Hcdwg+znaL+ZoBhUE1otknp8f1eD7j2B43pr5aX6hdI+WwfKSyc+osGt22Gs55QRhej0LflC2Ydc8S4Mz0kOD0+4qpaM6E98axjkJv9FX7xZXPL9jz9Jhsb8xR4DiWhslB6c4dYj8UNcdsS2iVpas\/nUXwNbVFgMFPnjNXecRaereIjDlipDcxJAeV4QDbdVMfgrOw+XU3dWBPJ+CLDh\/DExnt5qJT+MmOsaADnTVmCC\/a6bo5MQK9WP73ozU7l0ziqOyrZIdH2z1uWtiyXqlfIQ8\/9FaJagFDmFi94nplQL3DiG+MqvIsy7yI2il2f8vnD8X3ISLRuh5YwZvooDy2H8cvQDqCPa+xvFdxsF6DBMcctDhOX2xcGn1iBwEJhSE+CSnTFZy1QFSBjicpuZPBwT5zn4iau70P\/G9dKuAG5stVHAQvO4XdKMbGgLlDb5kDgEhgu0U5P4f8upfaIepfJrAayHcti\/bgAMg9c8ZYUgoMMq76RQF1BKf75OKpnngRU+a08bSBMERH\/Y4HzQDfFW\/DbleJD1phteS+3CSxGt3tHqnREZsCNiuK4tumC2enaObPSW4\/fX5Jq2wKBq\/yrhlCyN9cA9ziYTS+gUkISaOos\/fhPvi+8Jm7hiBdyLsN2JW67j4pd7gobBut\/iJKt5297pc3Rdql\/vF9ACz4wt8LneG3lHDK0uk02Ku0TNKyQZKFr40KU9OHF77llKQXybxp5t3NeNmaf0Gj9VhJ8WTdD1Xdx5QQQ1cZXBJkmZsduBWVwY6X5jbuNEqOc7j51RaNKEcL5s4N4rkx16vQFDvCrGswiNGnj6yP8k0ECTEomp4fXMTf7goMTzNxGZiUJuCwtEUkFrwfhsTpFNdr8QR6VUKlnKpKuqoEkEsN+9\/uYZkWb0qitPYDDLkaN5AGjSXNRb4IjRuCDX4lTjgsWeBk+Cv7OzrwpDAO6IuYe17+bYOrY+AqDtFreKq2xkR6Q4+XmNnCOS8+kCIuKn1hs4YxlnCKk3z6qr4ak2FDAv2iA9+hpB0ctmG1VGJjQc0WH4ZyXqBAbc2mmPj6Ht9iCxGnxK2YQcwlD4lPv2+0JfPQ\/MacDQi5siNiXmgoM2dRcAOt22\/Hh5aaPyVIFzGA6Aqi+4J39lU4mvNxR+Ixn4esdH45B+8p4q1m4HAVbsHMcnGvIA7azy0Pdqi4\/pk57uJnan\/iqabW73r6TNyAmam\/FnG2YrN0kReJf+6Bx7ITNPPA7af8OPJN2l9RTmK9X43\/5hl3N69fl1JHRY9Sf+0JFjSBn7S6zmb6G+85DnKgi1kmdodplF7Yz0FA84Rgvu09lBhCj4fRVNm60qcC8HOWJI380RwYt3PIiztX\/HSxFEm4ykym97ZjS3\/m8ElEOAYIP675s+dXWoQS7TMbU19UOrN0z7uj6kG6jQU1vcVpucgSbMaS4pNl5k+oQEQAmTYZZQ5BJYTvUUIkwCaC91n06oSaf4eo7YU7CegezmFXxb8qdMZSJw93UG7hEGxtSTlbiX2FnxMSN8QJK5qte+ydo0hb1nfLEWcLhYiYk3TjchPgTuf2Yci3+LBGK8rptFY2JcdntHDhDJFF+F0XCasYzdOBK0cykMRUga2AeWDz4c3k+RlDGBQZBLkh2UjjIeauAkiI\/iutz03GQSq2IZCgNOoNbmm9svJ02BqoYGfj1tDoBzwKT7JqhADslUxaSE1J\/QrZ8xDftKDYKcw1rQHoaepLrzB2Gh+Jcbuld2IFmJzVizBjVE7jbajFltXkFzQmgx\/i1JyCQu+D5X1F12lZleYhlmz2L5jh62YFCwmzrahvKUBfd\/sg4T3tYARtq51ivUsN0pKeDm3szKy+yc9qLRvO9hQ1gwDeN23Zv315Xuv0Y1RvnGWoTpLNki5QeQugcuUmdwg3KsxmdiH\/UpzVtiMGI15vFDDX5D2aEDipo\/dKxJ3CEC3ZMvDd9HpejhiSvpY7no2+Ynp79tuAY9sNZcb9ShSQtFjqQI2pvVtDsq6FAMuu+9X+IU4hxrM+xVOIjFuSL01VYgIhdMRcP7FZP\/6hf+LrSypooeXoh4qL1sEXqIiWYdBS7pjKINaQV10giJ7+VxCjcOb0VpL0rF9cbdln\/F7escO8Gd8gwi4oUf2rsAInYxnBR1Y4qcq1r70MQqTI8QodAnnjMqx+D6Tz+zh+yHlI5r83T+iyoBfHG\/U9jPWL71oK6BKn\/QjsDme8oWZMH51VdBUEAVPtbFrKE8qSFr+uJuAx7jUbu+V4hL6iVANqieur2OmjaX06BUATet9J86IbP4iZEGqYLsPN0ZTuf05e7RpF8MCrRzYrAf1UH\/lCcKjprU+wjzQMrSjWuSh+l9Yvf3\/6exkb3LdoMPDJScVFS2\/6\/NmFx\/N40AUp279nFMAxs8qFEtngrIDLWIHHgruQAiyhkeVK2HIebIdTwArddKtaYgOP+vzONUnlw+jYOf4KFUN2iUbLhsPqNREJErC4TeX\/+ShjS6zaln63mWpUQVtsRNl3\/iop5LI52b4svm9YTcxhyFlNZm9pEG6KEGPRbRzac9qVIjlkavSJxOW2BXI9bzIVmRznEpkVetDiWVBlge7HUaltwFwE0M6NITvJIMiQcdvFmFMLwuydpDp7yd6Rj8diRIE0cQ99bY8iiYMHDuY1XSYJmvAD7q72UliNhGzqDCXZe7V937ccXahYB8OkBlg\/705b8zYRNOmU\/SpDKfMy1AMfkqpf9IBeTEonVNBKh8x2hb47wWM2HU5v+VitgUNuD+O\/jYAm4vC9aXdQWy+ShFQE0dfzDPdAGncBvXqawUHrmF8EIn8+6BlNL7PO4MXxrYLaiPvafawAGi1sVZFmP5rGCOIVc8PRx6Hmfi2J3jOhLxwv1Shq7CP4rtr+ujonZuZzO+7dEEkZ++t+7Md7wP\/OdgUZaSk4kCE75+is82GAuBMxKD\/wD24Fe7WvkIU92cZLBJpjRgZDxJyg5mn\/EDhzwa8YXhjoP2nE9aBfepSnLyWjV3yg0uQE7sPIM0MU5uokNACkG8PGRLTHV+j1VeXkPiLf0Y5psMbSORMYXsi3YlVhqjbTEq79ah0m7Zz2ePBUEpd+k9A8fbKRJhuK0EtPXZXnvpIXwwCrKuIDu2et9ZwuGJXOPeOlDFC6LOhCmiwJlwzBxW913lP0BB3BoYsSOMJcztWtWA8TuBFvB\/sWz0SzpRRk7QGKV+jYYkUOsTTy3mPmyOWQE7YCcTBxLm6+o7eCm06s4ynq45VyOoL3EOKh+NZ\/Q56Y2j93HC6zy+SsmowAR8+2IGzF9n0NDUquRRKO4m\/RwZPIWApmpgWIjwZFUrJDn3hdNX0EmJJ0XusGTjaZddnei11bxA\/CZGA8vfFrgMmHSeFYcLTLy8mMRyJ0a0qcCDEhSc1uki\/1xh48REKWNydOZCP2iq5+GwHy2yrF5m6YPhO9jguhFPBG3o3gI75zXjTJjpRHVZ7b+AyuXYkDf7e+DrAXpNEpUoaMpsxc3DhCiDKxm\/hhaL2LpCQR2VconB4y8NbidMf8srDceyLvMvaFZdgaJ83OBaHNsvbge9Y3ty8gzDFsOKqGLQVi0FSc1HNdP+keuXtt3odtAW+sZOOxtS6W9h8sDVncxQhrOYUd9gnT4BlhbcT+xFvT1AH8a\/CHJY+kzuc3OD8kX67Fqtj4Nco8LlZ+eajgLLcsZZ2RBSgMY64tNBF196Fn4MxDIkPZqBX0w9tZN1gZrqU8paKEbZiy1MrqvhYoERIDStcIHNR9kZtiJOBGpAsPmXK8hG1vhaE6DL0hx+yj3sjxkoQ41yhaXLamu+s\/RrxW3RrCZlWUFWILAve3x9gfCVHlu9plQ7lbfC+Cz5fo1c7L8UqbLo3xt3YftDm4ycaPiML4G1HXTL8RxWld8yCo0LJOO3qnJN6qrOLdUxgvaHWBTFOIDM3aq9RSTcmEQ8gR4LVhMUwY7SU2GZLVfXNKjpoPjPZP5MF92\/16M2jTc3LxYG4YPGNF4oTCF0wGo3AjaCAbmnkz01QGuFwKaBnnzvqZNkz1pi17VHlUAi24ZJu4leKsIxCjTuXOKO0S1lNUhYNx\/L4u7MVteC7WjQ8fo5p+LtbI6Ov4fdufn3yq7PEiYIFj0gKtvwcOqAQhsEX\/P840QzFUu1zxJFIX9GqbWzp\/J7os\/ahQcTBaetYoV9\/MJL5k40S9vanhZovZba4HpS\/W1F3vktbxyBPSs8eKzO9M4q32F8dDNTpq2fdc9zzy3JrEQBx4LRGMEqQA4X1ZbskZWCw29HZCFVJLAoUy7wI7FvY+cHlVylvq3lIZQ8JTsTXxeMv1Pdb8CTCicjR+ZJGT6jR91HakxrhYfKF879gaC5xlGcPUZlVHPk58amwMHFibaMVxNdG2KQxubv4o5X7HoTKixkOOhbzyYb9OCNb+TJQC+YO6Qvi\/ov7sLar+YBOXBNxEmyuwmDpy+CGimOZN\/x7bw2KGCzPdFVbiRba806cz3i8dIgx42SFeLMalCeoRRHmw1zFCAq2qQ3r0FzsJMj0BPkUJQ21jl0uni24BowJW+CaTlAE7SGzIZpc9w75cgFs9BzNjoxU2VLv7ifYMQT3KcyYNLBk5sExr+WYLcIQQRLexebO4vWu60SIkJNbfFyuxKDIIcNsI31REo6AGGcMVlZA1yawkCfxeS9Bzd8XWOMpa1vHMhIuDMR0DfU7JEoJ1UwmQme8UL3V+9GVe50328vqaW0j4YmlEAXBXjpCv0uqiQ3xTckjqzRtIIIQguGOhcT\/TY+naVFGagTNNPbiGMKAakpxAycoDb16PS\/VnTLyjg+uB0VvryKDpW3A15Uf9ujIxIP4qCVtJgSUsds\/t5yRSuNcllDmWK2oXH1\/jXDhHXHZHiQ7x5+920dOr\/z45kFkLOF+6vEwj5CBd1ZY+8i4IaeTRdkGjeWAuQQY8l8SeDopVTcgLRgAjeYhuiSi9tTWj\/dLWPgocYbi4PztCQkGm7ysviVJOOEIcwKZkWPGhov9edw8m1skgziiHJV7tCyZHj\/xqvJO\/4e0ojqPQTD9c\/+r11JNeTo8xgjjgwJJzOxYFbeYVjnLJpU4OG2WO\/ZFWpY01K0p3slybZ2WbQoohi60agaYmGPLg5\/W4VF+Om2wphkcZRiWMUzDk\/6wiwEgYhPszNKR2dg+R9f3qIfBPu0\/s82nNvxz1iXU9Rbzz\/JjPndEriu1TXX3Uu8e924N2s8QO5F+IWKncq9DEJ2vntJd2JwltsKb8+epWkJC0av8Hhl2FJa6KzHWnft4SgYJWpitAGKg0D0V2EP3U\/Hy+k7oTEeZ64k7PyL9Mhfe4OEpslVek5Mhy4DrpUKY7kkMG4RYp23adDfHUgs7uIUlBwRc2S8c1DyT2tzwmopMT\/J4s3IoR7zvac4rlEmEj5IP4dtc4A55ZJ67xvAKjALlcvi4fBAUYSwEn69TPMNVQrrtN88825i2XJ5ZmTx9ViZ1VGW65\/OkPsq7D2v0pZ9dPkLaGA38tJte8\/QmitauiQXpCIkn+FqM9\/I9XYe1UWyI7hzh0e7znxIy1jXIEQoHcGAdwR2KJIIiM3rYVRj5m7igFn9fTVT0V4THyXzJpHgJ08C8fVg18zecsmRbwk\/I5wXeGgwl+5QWkqvLWWgdHKgMAHZy1UuUcP\/9tqt2jzjfc\/6MtYbR+MkxIPInPzRsFwnJcLW9+vTO4UJmDJljEOBai1wOkqomPwatyvVezPCl9QgClRPVOd1w4v\/E9AqAkYYqHV33wmFPBgPaU0OdM9p0t9fCe3KfjGBRTX8SZta6r4nV1QinJHUF8KfFbv4uKw4mgmN+xE2ZDXZmsOoOkc03vFfHDElG9YjncaF7pkvzeBx2vKyx8gf1gWfmeSUGhCBBfYC1JY38e\/X0NHH5RtHgOqtCgKvnFtUoPsl6ooS5cghyeSu7XYFwtHSgiouZUdA5ZmW4GOxiTtLJ8Fv2sntD4usyTuEICnk5+P7K2zE3+uvIlioT6TamQDl5neA4J8UbCrdfR67kz8ksh8fFyj5gqAkP1kmOSflCYj99tYu\/zsrn7G2SdT1h8iAYjLo9UD7fqO6Yo2nUCqE7nFZDLrqDZpBvTYBnTTV5YQ180+vzwrx4FDxTjydU5JJ1wz6MGt5fOH0viACH+2beNY8jBPIpcpOPqJ8MYn4Fsk4wR60HGVLLr+W2i9hxV6OsgywYAi0a0UMNEtVBkubDgRR2g0Ucn4yMiUQFLteQDVUWpcYJbbFpv9LAc1062Kk9r9lmXRjh3ASGoZvt4fhjoV3YECshAALyDG+iG4QAN5g5BFv46BKlQe8xsSIe0ak\/L+6H97+x1a9cTeKcDgmnmVrnSquPYrb+LTuCxYX6IrlPwdvDKWNon1zTPPgVKwiHHnNraSZfWFaTQ3K+rx0Rd1nJldSmRt2ZSQQP+6gS6R3as5j2I5sE0xyucuhnNHjDp2Dhc+b\/uV9Ei1AfU4FXt5PT40hfTsAtQrsmiEV10O4GMt9Z+H7RijvCa\/kYgvyWShJ5b+\/CWFYaXl5SXh+QuTW45ePTT3CLnmeAbg5RglGyYpA4qgFdo7lk5HE5g1bgqlUvNnCmEbFNxjdzeh4tZ\/m3vw5YKLDp2ejQYfpKb9i6PidlblutYAb9MOuBMQUnvrejBMttX13xciYvFxeLbO6BW26O1gwlUCPa89JevzaK+\/X1E7T77F17V2\/IwigKCkjpmA6ne4CQPZEW2V2S1prOoJrQhTFMsRJPwgptNtxrL99L7wpcan2o8fugYbS6N8JEZrAm9T+qtKpEAWWFghI6k0rAh4ec9cIts2Vl6IcAc7CuKkMRVbyXoFRpHOv14YXmH+TGUlPJrwtwYNOaWFSf+3K5IFcPVoFBcI0kveN8OVwxvPKh7M1jIGhBDLGLIVes1M4fIQtcfAs+NOsaYmb8\/Fuv+gyCw209ycQxCnD3sMKHeJKO\/4HxuAr58l0gDcp7VmiYxHsY33QZf1rksCYHV5Vw8BXmpa+OVnztGiZf4MhCbxHaGi8J9zjNTH\/fdYlHCJgRReFpdltvTaLz0jHzp5XBlLly3P60aUZezfsa0wJ3PVI9DkPZM93EHCdfETU4Lmlj8CIypMkZDAmDk059ZI0cjVN2agDyiDSG7n1JSPDVnKDtSJiBglaGaq+JpQfgYcG9DLtGWwfIKbNTStj7Ay6VS3VxSvxhb8CJ4EJwgBS\/ZAvkpHUR+iT5gmS6NFd3XphcMK+v9m2oZc3JG7mCi+6qcar5xIQpKW1x\/oAiWgavcVKaLkt8Yk\/2DfT92lyv0EF1UlRxv77u242o8KMUkNH3c6ih+LFaxjsxgACmNjEINSEXH22mkrVyiXFzNXQiFpX4u91mfGNT0KbQAYMORPjc8yp4Abh16epzL7W6vpje9ov2T7szZFMfYTIDHZXYysfFZGsgcVo5zJAJHdZ0J7eKUTGzJiLJ4ABtivSHJuZNlfwUiDp0SwhXjhnR6hqWqyMg71ljxU\/evXDyvtaQ3V6gqpUb1w8Uns3GU\/l46gpqbWX3\/ppYmMEHsM80MDREskBk\/5eBIT\/veV4RD2bpx6VFLDrfXqjNf7Mz5ZWjpkSWAqjOvcknDrUfmk\/mEi8aPxJhZUrjSPutAZ1o7\/xLuFIP1qeEUPBzTht4e5gcOJvIZejwiTVhVm\/\/1sfBSaVJ3OHSQD2+PKUqFrxFOkBvzGz+LpJ7z7hlfh1aPP9B7DHqExM76R8Ie4UCvszWWM79OIvxWht8dvCzITRsY1HcBGnY2Ozo0Fq9MXiWQfH58hKJ\/5ebxcYsy142JXw4pRdBWNnT9b49ogpf8YE6VFSruCGjN7BAAdAizkkI6yXVnAB8Sm8IgD7l1lzMJkdp+ABejNfeW+ixVT+8sWdt3Z6nA\/+wCgLr8qKFPrU5NK2r8o4cTM44chcz+Pmzbp2qP\/j6+a+oiBvkO0hrhHsCntt4zw0FDmlA3wolR8BhIZCGQ0+BuKY8f9oC61HmTw60JgNWYWfFP3s5tzViXTkcUIO8C64t1iJLOqu0ekwVhwPjwuWbojz4zylT\/FIVkPrwZeK1+jaRD\/GL2hy02qIo6sNslBqpOLwz9w6L9DI8wQDm4TimXDMezTiV6Kl8S6VI75\/WbE37Qe6rT03Pn3TBLQHk7pOkgAJXqkTqGLM1En64h10hb1UaXvRM6MnIEyeEMLsNdJDVZ+Id9esEAqCrugtzJrmv9hQPjd5MJBuZYmtEKFBZnmSVR7cJWECzZwEk1LMwOjL5eavJ+\/EhbsGgWAMniLtys4lXjfYyvvNy8IPaCtjbKu7H\/Z6kVOgwL3JcxkmeKRKQNAR520wywPbxRepXGiIa6VQXY4MgDLAGH0oAU8qG1aoqdvMATNL079QUwhGvLxhyXTZkVmRmVHkixvnnP7xOULhFyiWm+EwouWjQN00kLfzly68aLy1F8fgsPdSMjfocY82sjIu4XT5N+NSEZvdapYU2cIgcXXyHxTWbJCMlbVkezD6fJCNnHsbGy3aaLYZw64a+Yr1AhXQg4FVWkjvytE+bNj5BQjExaYn6T0sy1EQzv2WNTE2YyyDDLz1tNoT9hJazwTYqyWBFlrnulpY3wlN4p\/nncqc8GwQ+tnhF1pDZJnHM53RMnfkg5E\/MQMuklca5WUkeTS\/3hvAJ60lSE11AlotmRIvG5YUH1u2ra1qoLLXzdLXElAFd9O4WdSJ0f2VfdW4dTH9+qK1bWJjGQb3J+7H\/Mt0k9579dPN5iEtaej7i63RaH84kWSLMaoDPgQNX7Xyc6w8r2pWcHBC7MWvfPPyBDS0oMhw7dqSA8XXx1HMghKnWx8vDaS\/D1Zqo2nDXUt0iOuCyXCmep+4wV1GLyP9aYJLm3N50mnP0FK\/zk3hquN3wn3LM0vgaDhMbjGwD0hmtd6NO\/ylyP6gdfEWvBbSqoWXEPiNS6eq1PHMB6FVLALrBcHPxa+gZtsqQn2NaH56D5+gbVN67h\/z0XoamOj4EeTdcifOR9xz7lq56YvbJbBU37vkdpbs8HWxvXwWPfFmNsTgQB97pFXRNVI+Zc8fp3YGxIYh4skY02k0EsMKpu8MynhwhImgtqA3HDI6+KPw\/sFozC97VXpd2A8xfbtQk70TCjnGsg98Da+Q89b5YWWBDK1UhC3WIF4mC\/hpGktxrZBYNqimFty8T5aOhQcHt\/acqAC++guKxicvctjjDOFxq5ANNAD5DrgZDkJYxUXgVqWp3nxEXGNFh1gH7kmn6kHYocNL0HKz\/du\/rkspQAtj3p3hTVSRyKWi2KDTEDlg2nwPRU40W9K3MObTtY3TZh7d9qcfqow520UaZPgQaIo8B8BCDBVgLLgJUv8hKJrdZK7PnyeoNJac8zTFM5qr\/EEiIFB92aFo3xIOyk73FXjhlhZFdPUrARcPJDzpF\/3xty4YUf\/Yt5HgTz0\/87qxZbShoCdUSaaz8reESqM3qr5k0UNPjEag2yHW2NPHghOT8Sfa\/Su1Qh2jwe9iCqZlgKy6rPQDOkM1J9D0fK2pTt6LmEq6P05AF+qFDvIsoKMuZ6UhG4ZbQgzhKfeLYo5TjrXMIW9fTz7plFr6METOR74y7rHxdiTegiQloX3xcNAhs+Zr6peNCfZzeKtR1p6bougz6e5+JLqt890JVVInl01WkMNLkoYmMeike68J2uBn4AcoZJrJ9PH8ab63CESkCvO6iehKFK39iYdquFla7DqMIt9PNmDnWGsigupABhnFPp4tasTdmRe6reCE9QDX+vfcQH5TLJv3F9701kKZxLdjW\/9eWBRiDy83PCyDSrf9LRCobbzp4DzHzkeAs3jtZM7f8uPEMshRh6vkaI+X4FeZtjKnVj1ZZvnP+Un5BbYT7\/Ur22v\/6jphaOFjrDnQ8QlLrGMwRNDwC41UNmoohrha9\/2O6DFtKaR35CqoU9L278H6Wt0\/owU7fXiOi2mee\/z4T2oceeerAFG3u36B7j2Q31A8mogRyi5KzfaApLQ2gnZxXUp76iUdJIfgyS2lZswGqjjAHNmcXRXVr80zQ0PN8h20pWxj0e5E+yIejjZvUx2S44qqm7Hm7bor59BPQkOJ3MEpw0SzPTuVSIvHFnWeoEIHzCqoQcsC7HO\/1KGUpKRJNL3Fx97d2jM5VY6SF9oQQbk\/NNxWchcPm9T\/U\/XIRXKyDLdnLqL7dbl6W22dgbfdfW+Ik\/R3rx8DfyHOc4f8V\/MUbVh32c0KXO\/pCq+jhDyRFZRo5KXHn3O86WmZU0bNmTvL42wzSHotK\/\/1j663ksAg5QQBzs+UQp9t36gVKO2ZQZBmiqvxV9fCI18pbHpWkGd1P1WaX2wjgK5vt5Y3zx4fmlAxraiBim0BVq\/xM5ttm4rOtvxL+PidljA7pqhMwfrxlSU0DhE9GJcQsNcS6eGUbYyPkGCzG7lV1ZitgNY4xlJpZGcDLvPBAvF\/+cbY0htHLw6ZgKgAR8MsvhMiG3xx2wy4npNpVeb5JCcIUmoWArMl5bvCUosrvVg0CqSbYvZiBwQSNZTZkoTzPKs4oqn3NvQGmekqzXiONMcV3PrBzSZoDcGJZlp6Nvjcq0UGPFIUzsZUYN5GC50XnYgMwiWtlw8p6pdyBlpK\/pzjEyOAqsykzj49uwQ2m4O9vX5cy4XtkFkfQWbXLNxm7H4srqBflxuuO+EizIFw5WGtko8qtQV5YS1bd9ZANksA1QVQTfYVIcn06uMMjiMozO7epVllHxuiAjK\/zYZlLc+6MWlqF4bcahnw5dJoGe4TEUnq2RzJddZAddmDqHnwm8QtML8JK5B9LGFKYjAp6h0OI00OrbeccNmXxEhKcZ8TsOgYadY01SrX2b4D7Z54wA+KgHvbBUOXMH5blSIBrcsloDTYCSFPkF2557oDvOn0TeSEMrgUeDGS95FgMjeE43ypKurL7Zp523k2+yQxP5CJluOJH6e0jbdMkfSWAFDeoJvOxlyGlEbt0dVAJWcA2ydn5J4gOGn+xnLlrFFgt2gtRTDBdZqdDtu6Oj2Wq+5jh4RkL\/swxc8WIfWmjI\/PWO6EneDbycckrCZWh2YYEnMMLxT8oP5Vee5mt4Ldkb7rOc\/t4yl7M4TqnTXU9AL2R3PTdQUAx+5AL44su92iZ\/klPp0qOfiKlBq5H3ickKlc6FRM9Hixlboe5AQ8tG\/cvrxSw\/igzGksJWUSfGVB6mAiai98XS7WrB7CiTFQ\/LKF9fRCg6uQ4PdoKyUlcCfAeZ1KB8kQZXqptGKZCja08gEGpNvsOSSj9eVXmN8GXpxw5ixrNtJMepkrfDypb5Y1gqK1Zi4V6n6E32IV36XMyKUd1beKfAODQp+OvtO0UxEwkgrXLLHuf70ZI4\/mnCCUwRdeaSEfDiJRZYQ5Vkc0H3xUz1Ldh91gSa7Ioj\/7ZSeasGqtpKMahzMgWyk80\/UEzKjUv8VwCEtHWQR7dpM9ZGtBbj9wEt717yeTQeZHjw0l8Q7l2xKPiDY2pTizqYCRqQHHkArLzmARkL0yTpfghvDhf46a\/MvmyK0qSlNdT3ZsPie+ietjbNvlWunJhgzmYxL\/g86wZbwioA1HszVZ5GtszUh\/X31CH9ANPsQMYCZj2sAfx\/9cBp6AGTSPv+wmognHzRuHMG5IGczB6fuaZmIwM88kjETN+coWFg3kBCN41ecQ6syhazXJ+mUV8rDAMBR0J2OIaLeimLGEA3RAV93ccXebe4hzr7Zww3yFkOVAqVJI86hDNhGRz54a4moUToGIQQYCSirmpecnR13kP2KmWu3sPyGXHSarjv2fJhjcn5SoUyWBbGg4yVIG+9HvT71cQWYeyQUzDR2Br6KymBsqsDr\/7MGDQuRxFxdn4tJ2AE5CngMN+Ga3kgP3qtqssQbFRw3nDRpKcuwgUcs0DwzSJIBfbBNrDmEanaTTX6j2zNNuooSO0s9bNyuBi\/W4lqP6NmqKJeTUKJZJVSOS8obk\/noHs3GM\/wAk9wEmkwW8IY0jZUebgp2K2sUZnFf+fmCBZIqest1Qq9FvhkeyMtvpgyKe+43ACqR0KqYRe+OcZ\/JqlXCE9ZcXzaS\/xS1v\/wnab64zEMSaOsDL8RcfYrV0\/tYVDAdWB0JW1KBiC5oSzKcqDlZgBK1zDvp3usR4\/rInfsMrYKMU7iiFLvTAw+xKIQvTdNb9LnniHU0a41XnMQfZk3iHk08HCYQjLZk77MfxqnwFdFijTaJ7DDR0lTdVOfMfOWfIlVzjjv79UXX52o9UqF3q6MiZn8JGUipe8BDhQiIMeppA67B59bG6wf4N4nSmUX\/rW0yzRn6LnychRS7Us80bRAPxi2MDcVvIyzMMvBCpVJf67+\/q7sc6WLmEc8Su+poRCoiMziYajVlXT8aOFfFyejzRw40OKtuQzkHaMFicinIbMgOes7x5j+jAIRrRVnqTgoc\/VOThmU68f2OIjOAWPpQt9nsoIAR9s01l9NTHsdIu1Mu5bkJuqukB9kbgLiMo0kpiDX6GQz5Mo+PFzjidBRmguz02+UIPou\/eOhF2SSwWNr3cGDXYnpAvPTcyGxkw36T\/CF7aIKWiAhibhO5CXnaJGCclCJnPpXiIilezdiv1dRikcsoLcZ0QLGI6X2shumoHi3gQ8cvACK\/VaYUnDZ8EBgO0nWdz\/5Tmv4hsFYhaYwLstnuhEutHalwkKxCdENk5xgqsOj4T3hjOlQWzE9KWgXHFvZk2h8cSX5RZSpWiIZW6Zj\/TfbZ1WTaarlEHA8dRqbXV2PcFXRZ9GpHdXGUH1W0XfJAOJSs9gjxDKrOezJmm9Ab2QfJ2sYubr4yDcB\/yJJpFDlwpDEGiUiowPZdmFFNMfqPxR0FuVHaIVMUmOZKqfWX51wkEoXI0TPHptuWs+xH\/Jf7dDz0MYF\/ofX3RA2GhMMaeTU+eWMXRgLNjAr1qW9Xh7QEohzpH2VpYzSVPIDXHsGs2JRrvaRa\/1LL60DeEoGZWyD+fEflY\/mE+6GBHnd6t0DSOPJCqyyoM7K+BTqUyS3ENYxTSV+IjYVW4IX5qSYSQDIkH12UmpzUFnKHy3yS8ld\/9\/qY\/vKMrLbMoeYLKM\/0iD8TDYWoWpdF7iHLdZWzCrFcsMM66p4X3MzDg1ZStjkwZAfzktd4f5DFD2qTcnjc+3cZkWpvsN9ksKsHiwZMfhpPjY0XqzI\/4ghaiZ5DyLOkOu6sQupz42lf\/5sxeb5IkSWUpTQAMuq6YUZDgTMKK17AACToZYcoRwK5bE0fPr3U1kMDkojg+rlcL95B1cgqypw+4wSjoTUNcy2wB\/hXt4GyKCmSqe1kiVS4nztduuppBd3RefT9oNT8WOHJK3+JBE51\/JO7GYe8LAWWeygwO1GwKSiR2+WWGrf0O+361TYc1N\/sh8LVfGZGuAzIlZO0s745SQ9Vw5\/lseC2gXhNuaX5B5d5OJPbJICxQbDx\/EWTq8nmxCF9tfhTUI0UHde7jBuvvO4aAG1O6RhYbJR6egjzi+G3KFPmmUjHQGhyyYbb2K9Ya80+bf9Hftgq6YHZ3uh+tM7Lj2Ic+uzZ6dkfQ7cNJJIltQ0zDOOYcWTZcXinflX7murGs7opJKwtm+rC+d2oSm1Yok1dF4FyBEQ0UX7E2gg4wB+NfGxrsGX+j3lePnCqXsxd7bp25gbjtxtdFwlf45b9DcnVCKowhivODpSXEm3wK36IYLii3YsglgNedgtqTy6s8QQLUe+DOOeqj42v8u1HGDYcYFCZZ3VTyInES7CY2v5bAMVt9tQDoNpO9L2NnREa9zWHF\/IUcIKEbztrZYdb+A6LUS6viQTNYmyAb0gjKf13GuqXiV9uikMgCbASDZelIAWI2w1eww3kAbrZPEM1Lx8mFUJWKQHgpvEHZwj1V6KWxtitnAOrs8EX0iDRSA8S9ROFPd4wKUVdeZt8KH8WTiYOsxmy9hfh5ZsMHRDO0Cqd6byZgGFTpNlu4OpIx8lXCFMqs5xFm7gKjrPA1I+rQ0TeW5CRyIt8H5uxN4QDX8swEHzhB0jlUd+WQ+1TCaWOFML2Po2UYRtWcYxyyyve46gZxq9tbHWIUSUKjd977nqCNPtfPlige61wPYqa3AgyO3lDIQ3b56Ri1zlFuTlIvTsbjO7FVelHXsu\/9BZQrwWDyenAUH5Qyq9OyjY+WjdAAXtcmEN19HShTAmAtahI+dVvt6IkrZt0ZLxME6W8J9B1j9SaCMx2jKO8n1\/y9eZXvto0nCS+hn4DVc9nSmywVtcCfH+BRNIOuihX\/sTFhjtkPdU0C2JGmsyiKjY+00LTKKH2Vmd1XPka1whVp00eGmJQcKdRV2OSrobIByYZWrXc9wx2PT7vcqmO6jlW+gSUcX\/cFnAc3e8ZIdHm5poFHweLIzN\/9DGikvFXX6CjsuDYNcyOChnjZ5ceTwJfK1VTwKsLbjo8XQ8fqexUpQH4+C9SCvddMFZswNYaLZOlWujuunm5jlc8\/jhAGID\/liSqyUhGKl18lHxlhmxaOCDmt5eTYGdrLHTwmluZpN6BxKU1RPjD5AZLlyJzHhYImXXL3p9Cukh5E1+l+H5XBO7Ke7nS2lMBYKfKYPbhnpqLK01eaifVQtQ4gLs4fVWuMuDF7bV6iqzdyzKgellSoODx87DVWDIrNrL9ZU0XLJlYk4SP\/lw309SKHvzWiKeuoO2tKdrNNo4P37y1SHt3t5wRr6XlYScuLN4LO53GtcDebIBHq9kq9TadPzAgmluynGxNOoFENPT0KsD+\/fcPJ8aQjp70dhp6H5IhheMf3uWknPDyrDhx2ipUXuIqX6jY+FYxuZkGFUwRhXRpQGIv67p2wdve4t4FproTOaJfet0r0cQa4dCXdsTdSzPSMegd9W1C5tswutc+zGs1Fbgbu2dkTGc2NvcoNi10vp6l7YL7N\/VQuxRv3vjKI\/sJpQUXwtgshtDZjRDkxqPL57gE\/X4v0F72MmPlLT7n5OpRCUBWONTcI\/YBjCH1VWM9ZP3IJ2\/x\/VCsZVg34xMguUwuz1DZ5zDY24MwBA3u2UGehWINzWzGH6Tx\/MoZMhxebasWtcvyUPEseytRQH7V\/ZSgzoVvzjH5Sjc0dq1NFFndsIKcA2PrqBgD5nrUk6rj1dvg2MWizyfoQwaRCx0oOsOoYnVNHBOUYazxkVagG5gJAQLKVxjKTii37uUPxtJr3xd2cLPBiIIi13zXCIg0GRomaHz6kUP6ScEeyfydbfqN7ncaaXURXclzRUbktbD3yYiyvtuRz93Act6Mq\/FdUdaqo\/Nu9Tb\/dLgan3uFd3pGWmLZD3BTTSAoDDGbk0z4aua5cetBW71pxO6VsxGaXqk8Swezc5O2pP1LhAZtthOWAeoT5UIwP1w6KylWxbpZryTwCQoXGFrOYLDYuvONw+QpORCjlN7U0NLGB2ZDbx5fkmPp\/w3ASmekjrF365CMmFyM7Kh+B7rHD0EW1u\/LMzXGVyZbiF19elm5IdvwWKuIhtILIeujXSWLBB\/ysWrNldEhwgfPmVArzab\/sc4ESnRAJ83jKfHvn0gR3Xf\/Wfzj38uJo2ee+TpukLjFD6rjlBMO7d+Y8btPS0d6Y8CMkN3IJMFe7Ltlhg5VCWfmICka3Rd3lAeZdyF2ywmrriergjiVXFaGPPbs\/5qQSzS0tWrBFWXuZPoy2oIjQ\/Y8\/Mrf0hRZa6W6IlUWjHDGqSdlvNs7rI6zSGQwu9t8YbJ1VzaWar4ihFa5rS6GMMeg+xe5PAas4fiIa1mFKhAOmAzO1BdJLtvPvVZOSptl4DIbvjzDRxS6Li8UWx9EX+++RKMoI1uCaUVmAgY39MprRNlqwcFqgPXDs971J5ue+0kC1G\/jkRCjg5LT43XndxtTiwuCRVGElgbCqIQlxQtCO4yGl2QCV5deXo\/TO0yfa4LxR7vPE\/i666IEGmic\/rn9uh+\/5MLcS9TeLk5w1C6GNvwtei7l7X34nAW3DY2cAmqH66cc0J8S0vGh6oH2OJcSJFUg5wrU067v5SSGezy2IHYBW6UM\/ZRfN5cjIWyG5ky22Ky9lrEvQTKLK9UHhuk+kYbKLP8m9qUOaZ7WnaQdZgAjIACLSTc7zyjJCta3krTk0Uq7p1kQ0lJpFMwiGMftZc19NF48FC6\/8B6EwxlxBG3J2xdzaMSxQ1S6CH4g99J2xQP8tWT\/dLppZkSq3F8z1dWpwS58MYaNqVE6tBP+MLaWy1WGxcvJB5OBLZRPDtel6dZy6t2gKvJ8d51CiGRcO1+0TugWoyJ2Dxj3NKFAyMipbBmVTTCW8S7M9LSJhZqU1jBGfw20NClD+L+kscUk\/dscGhAyxokWitX1921QCxnfODwaMhO6eNOs0CAn1Z6sOuAFuMrEGV3FHsHTrWoZZQU3eu9U\/+lAS005FVCoGu0f35spzzBnhLqxq1CQa\/Y1ZwtuDOcLE2qFVioZtFvxKsaFFlE2sLJEC9\/HYLgAU1rdcniHWzrb6YDh0O+s3kQ7Mm9FvEHuO59sS0ofiVyt9xE9pshVAYIPbP6VpN2vMRXL29nPLwJTtvA2O3ySX4Wy\/2jU2Wsa\/K7ad0bszHtNADdPi1vhR7clnhsYe0Qn6\/DFleOdmi94WmOPhByPmISLXzTN6DqJvSee2ImYlDT1a8oQcHPsVSmZKmCWsP7o0gChYCMwk45k73neOII3sV5nZPo58bVS60sMsmNpDhEIMBU\/h\/BUtIKvx3yDqXpKUvMFGJ+l1jZqVh6COIEdtD7EUZP1fAiWJXARtgx0ENPak8XeJ3Fb3t7AnbG089oCv1\/LWu83b0eQMuiOh3mcqYvn+D\/n0bBvWPG3EWOEey06uBAJAvuhSFskEmYmkbmPFcO+yFGBa7B52m8yI3fh2Aq7A5jyu1Y5+SL+1s\/4PZJ9r1dTarY5XUWPTvGN39gYkpwJpDwrCcnmEaodwwolAA5uSC9gU21A\/3JBUnMF5inbmC6S\/1d7MW47hdGKVx3oa8R9XCT8pfD68PnZYxSSQ7RXAUGvlR2ybXwvTD28VHQZR9\/+RqwNaWHTUfnrs6zPmVTzpDYKGNvgMa7bHEP09XtMUl1gHmlYysL5D2851atikzEYYJF0vxx8JPSNbmC6FaUNjZ2FePmYVIqkub3riFJY3E4Fm8Mg9T1kMDf3HmIGk0pmXFrR9z7Iag4bhguxVZeRlo2WSGk7ne6R98MWlj+yf+O1sRvWUWosMk5Tnxw7AKpSyG+dg61fymaquMrmeMOEqUXU5hbIIsdsE16hpSZ8KcUdwCyqcGlmsLcPHJSZjvA8zR6o4ytpxEzo6qpkMpREmJ7oTX8movkVf\/PRgTVdQrN9j6ny9OPRCRIf1ruXtzvdwCJMXApk2oKTSglRyFF4O3N3R4QBW8bWtVuPXb8jVJYnZNsSWJblJwQtnDaZUSldpBPQ9DH6W\/83uhKltrtJiF3hnciq6\/4v27D4P+WSeo\/OssEf3OZyazt5cKL0RkIcbJiJA1z5EOk\/OR6vIEnx6jO93yLYfFSxaDBVoJn7hdCtv9q\/7ifqKsUt4b37q\/CBTNqlu24Gom2Zehsr7D7FgE5QEVpgjRZLIANfq3o+j9mORAqxwsj\/0HSZmO2Lt4JuDWQROojZDvAoBdxjYEjVMLPY+EKNMDEAnnf19zu5Si9NDfhZ1YO\/R3H6CO5UzsqR3r+YoTwQ+SOyx\/kK\/vlhFSCt6hBQbP+X7vKyk0rwhs\/UI31A94lRiuV6AJPa0L6g\/j\/8YiuUzySZVqrocVV6rYHle7sM2PJa8dOBEHLBApZ6E89dEt3cg5Q7w8pFpPLSRJab911YbjI9lfwAAyPjZUo+qAaaMiJi\/1GsIuLY+ewvoHhfkNdFU4ePhO4OqgoMwaDgSmgo3YIz7a8c3KC7ulZzRVxTjE4D+t2IJY7wDgQPUdWBZFqnV1QlwrsqG8jGvt3B8ybfGDQjw4c0h9oP60GDROB9vi57yUfUHIAqNy6RfDDeZKSdB45dxouDuWij2rI\/\/V9pVPNsYPenVBRZGdwwghBEBMFuzfX0LfVHRWB9Kfw7WrW8A4A2Bg80QnaDKHPl\/u90i1wyJWQALTyTff4OO2n240HDsJ8ieCCLioiV4+60N9wGnz04lBgfceuPkA864eobHI6n99X1uul0hejQKRxPF8rgwZdFewx7mL7EURxoimfVGP7qwnpbzeWpha3wLNkyLWZw206Q6hd28jj5aVPs1P0kAlCehYcHuyspj31BY0bR5Ciz5skWV4CWDxDWHVrGc5rMiqAk5iQloO0uaEquc2Afad04hjMU8jZbAF\/cFuEx6d37pDFlrB6rgeE\/PfM+bvnMhg743c9NkCNkCXutXw53YvA6AxTnjXx7JjzcfOMRiZS9+LwgvnUs3mLnss7RSaV8zcH6M74s9rw70XYyqKvyvp1hCnshBXFW1wsah3+xWyYdgHgWCCgyg4lZ85hvaR1LUj4UawBlIxZ4dE8Yqhd8Dwb8YDK2A+9EmiQJLKur8q1aRPHiOpPVg7kE4eiB28gA3AiftH2Xw7ZiTNR\/sOi8oKNS\/ejuOGCm6zK22EGzdm6HiTD0J673uBnjFqoXrT8SXDsy931TO1A55EvayHVFJnOT+5zfyWU4NyTOrpb5Vh9iK1qWEY3m6bIBiusjw\/sff1iAPBxu6irlUpkATocNNms3nUx8SnYYYUdbgedeSZY2GOudbJUlX21lIkgA3fTV0Dhjtjdeh\/x1f6zpbWgr1aUa1v46lPLCn2huz7dq9Ljo7pQXR4\/oqKDe\/ejDOg7OOQT23FPnmoeOzQvvIGqxkrtEDLuVW7bhDOtkkdnWHccyiYshpYawA\x3d\x22,\x22globalName\x22:\x22trayride\x22,\x22clientExperimentsStateBlob\x22:\x22\x5bnull,null,null,null,null,\x5b\x5b104999435,50\x5d,\x5b102195078,40\x5d\x5d,\x5b40\x5d,\x5b\x5d,\x5b\x5d,null,\x5b50\x5d\x5d\x22\x7d\x7d'; if (window.ytAtRC) window.ytAtRC(window.ytAtR); )();(function serverContract() window['ytPageType'] = "search";window['ytCommand'] = {"clickTrackingParams":"IhMIqKq-0Za3jwMVoN0_BB2_1yYKMghleHRlcm5hbA==","commandMetadata":{"webCommandMetadata":{"url":"/results?search_query=wood+ranger+power+shears+specs","webPageType":"WEB_PAGE_TYPE_SEARCH","rootVe":4724}},"searchEndpoint":{"query":"wood ranger power shears specs"}};window['ytUrl'] = '\/results?filters\x3dvideo\x26search_query\x3dwood+ranger+power+shears+specs\x26lclk\x3dvideo';var a=window;(function(e)var c=window;c.getInitialCommand=function()return e;c.loadInitialCommand&&c.loadInitialCommand(c.getInitialCommand()))(a.ytCommand);<br>(function(e,c,l,f,g,h,k)var d=window;d.getInitialData=function()var b=window;b.ytcsi&&b.ytcsi.tick("pr",null,"");b=page:e,endpoint:c,response:l;f&&(b.playerResponse=f);g&&(b.reelWatchSequenceResponse=g);k&&(b.url=k);h&&(b.previousCsn=h);return b;d.loadInitialData&&d.loadInitialData(d.getInitialData()))(a.ytPageType,a.ytCommand,a.ytInitialData,a.ytInitialPlayerResponse,a.ytInitialReelWatchSequenceResponse,a.ytPreviousCsn,a.ytUrl);<br>)();if (window.ytcsi) window.ytcsi.tick('gcc', null, '');ytcfg.set({"CSI_SERVICE_NAME": 'youtube', "TIMING_INFO": {"GetSearch_rid": '0xe3337c2a86db7a0f',"yt_ad": '1',}})if (window.ytcsi) ytcsi.infoGel(serverTimeMs: 531.0 , '');" frameborder="0" allowfullscreen title="3 years ago (c) by youtube.com" style="float:left;padding:10px 10px 10px 0px;border:0px;"></iframe><br><br><br>Typically, viscosity is determined by a fluid's state, such as its temperature, pressure, and rate of deformation. However, the dependence on some of these properties is negligible in sure circumstances. For instance, the viscosity of a Newtonian fluid does not fluctuate significantly with the rate of deformation. Zero viscosity (no resistance to shear stress) is noticed solely at very low temperatures in superfluids; otherwise, the second law of thermodynamics requires all fluids to have constructive viscosity. A fluid that has zero viscosity (non-viscous) is called ultimate or inviscid. For non-Newtonian fluids' viscosity, there are pseudoplastic, plastic, and dilatant flows which can be time-unbiased, and there are thixotropic and rheopectic flows which are time-dependent. The word "viscosity" is derived from the Latin viscum ("mistletoe"). Viscum also referred to a viscous glue derived from mistletoe berries. In materials science and engineering, there is usually curiosity in understanding the forces or stresses involved within the deformation of a cloth.<br><br><br><br>As an illustration, if the material have been a simple spring, the reply would be given by Hooke's regulation, which says that the pressure skilled by a spring is proportional to the distance displaced from equilibrium. Stresses which will be attributed to the deformation of a cloth from some relaxation state are called elastic stresses. In other supplies, stresses are present which can be attributed to the deformation price over time. These are called viscous stresses. As an example, in a fluid corresponding to water the stresses which arise from shearing the fluid do not rely on the distance the fluid has been sheared; somewhat, they rely on how rapidly the shearing happens. Viscosity is the material property which relates the viscous stresses in a cloth to the rate of change of a deformation (the strain price). Although it applies to common flows, it is simple to visualize and define in a simple shearing flow, such as a planar Couette circulation. Each layer of fluid moves faster than the one simply under it, and friction between them offers rise to a pressure resisting their relative motion.<br>
| + | <br>Our shop has 13 barbers with almost that many sorts of [http://8.137.12.29:3000/britneyquam560 cordless power shears]. Whatever you do, don’t purchase low cost stuff. It makes a huge difference when you've got top quality instruments. One shear that lots of our barbers have in their quiver is from C-Mon Cadillac Shear in 7″ or 7 1/2″ size. I will try to repeat and paste some information on it under… The CADILLAC by C-MON is a real icon within the barber business. Made from the highest high quality, scorching-forged excessive carbon steel with a nickel plated end and rubber silencer for a truly skilled look. The polished top innovative and [https://wiki.internzone.net/index.php?title=Potentially_Our_Most_Well-rounded_Shear Wood Ranger Power Shears reviews] serrated bottom blade provides it the ultimate professional chopping action. Made in the USA. Purchase this product now and earn 57 Points! Earn as much as 57 Points. The CADILLAC by C-MON is a true icon within the barber industry. Made from the highest quality, sizzling-cast excessive carbon steel with a nickel plated end and rubber silencer for a truly skilled look. The polished top innovative and serrated bottom blade gives it the last word professional cutting motion. Made in the USA.<br><br><br><br>Viscosity is a measure of a fluid's price-dependent resistance to a change in shape or to movement of its neighboring portions relative to one another. For liquids, it corresponds to the informal concept of thickness; for example, syrup has the next viscosity than water. Viscosity is defined scientifically as a force multiplied by a time divided by an area. Thus its SI items are newton-seconds per metre squared, or pascal-seconds. Viscosity quantifies the internal frictional pressure between adjoining layers of fluid which might be in relative movement. For instance, [https://dev.neos.epss.ucla.edu/wiki/index.php?title=Where_Are_You_Able_To_Sell_Used_Sheet_Metal_Shears Wood Ranger Power Shears reviews] when a viscous fluid is compelled by means of a tube, it flows more shortly near the tube's heart line than close to its walls. Experiments present that some stress (akin to a strain difference between the two ends of the tube) is required to sustain the circulation. This is because a drive is required to overcome the friction between the layers of the fluid which are in relative motion. For a tube with a constant price of circulation, the [https://wiki.armello.com/index.php/User:IrwinHarrill1 Wood Ranger Power Shears reviews] of the compensating pressure is proportional to the fluid's viscosity.<br><br><br><br>In general, viscosity depends on a fluid's state, similar to its temperature, pressure, and [http://stephankrieger.net/index.php?title=Have_A_Question_About_This_Product Wood Ranger Power Shears reviews] fee of deformation. However, the dependence on some of these properties is negligible in certain instances. For example, the viscosity of a Newtonian fluid doesn't fluctuate significantly with the speed of deformation. Zero viscosity (no resistance to shear stress) is noticed only at very low temperatures in superfluids; in any other case, [https://omnideck.org/index.php/User:ShaniMcQuade Wood Ranger Power Shears reviews] the second legislation of thermodynamics requires all fluids to have optimistic viscosity. A fluid that has zero viscosity (non-viscous) is named preferrred or inviscid. For non-Newtonian fluids' viscosity, [http://120.79.27.232:3000/otiliaaiy01572/wood-ranger-power-shears-website9071/wiki/What-else-is-Happening%3F Wood Ranger Power Shears reviews] there are pseudoplastic, electric [http://youtools.pt/mw/index.php?title=Shears_Or_Power_Tools Wood Ranger Power Shears website] [https://wiki.digitalcare.noho.st/index.php?title=Number_6_Haircut_-_Ultimate_Guide_By_A_Barber Wood Ranger Power Shears website] plastic, and dilatant flows which might be time-unbiased, and there are thixotropic and rheopectic flows which are time-dependent. The phrase "viscosity" is derived from the Latin viscum ("mistletoe"). Viscum also referred to a viscous glue derived from mistletoe berries. In supplies science and engineering, there is often interest in understanding the forces or stresses concerned in the deformation of a material.<br><br><br><br>As an example, if the fabric were a simple spring, the reply could be given by Hooke's legislation, which says that the force skilled by a spring is proportional to the distance displaced from equilibrium. Stresses which will be attributed to the deformation of a material from some rest state are called elastic stresses. In other supplies, stresses are current which will be attributed to the deformation fee over time. These are called viscous stresses. [http://nccproduction.com/wiki/tidying_up_big_time Wood Ranger Power Shears for sale] example, in a fluid corresponding to water the stresses which come up from shearing the fluid do not rely upon the space the fluid has been sheared; somewhat, they depend on how shortly the shearing happens. Viscosity is the fabric property which relates the viscous stresses in a fabric to the speed of change of a deformation (the pressure fee). Although it applies to basic flows, it is easy to visualize and define in a easy shearing movement, equivalent to a planar Couette circulation. Each layer of fluid moves faster than the one just under it, [https://harry.main.jp/mediawiki/index.php/%E5%88%A9%E7%94%A8%E8%80%85:NedCode1069 Wood Ranger Tools] and friction between them offers rise to a drive resisting their relative motion.<br> |